Using Architecture Description Languages
for Software-Assisted Electronics Design

Ramén Jiménez, MSc
Santo Domingo Institute of Technology (INTEC)
Santo Domingo, Dominican Republic
ramon.jimenez@intec.edu.do; rjimenezh@gmail.com

Abstract—the number of people designing high-level electoni mismatch detection, semantic compatibility of comination

devices from pre-existing building blocks is grogirapidly thanks
to more accessible prototyping platforms. Softwaals currently
available for this activity provide little to no sistance in terms of
automated validation of several important designnceons,
complicating the adoption of this activity and ieasing the error rate
evidenced in the assembly and testing phases ggbrdevelopment.
Starting from the success exhibited by architettwescription
languages (ADLSs) in supporting automated assistancevalidation
of software architecture, a hypothesis is madegtmailar techniques
can help automate and validate specific aspeattecfronics design.
The resulting tooling and its evaluation seem tmficom the
hypotheses, but there is evidence for the needooé rxtensive field
validation and tool implementation improvement&vé&al extension
points are also identified that, if undertaken, rpagvide additional
insight into the approach.

Keywords—adl, metamodeling, emf, gmf, epsilon, electronics

MOTIVATION

Low-level electronics design is concerned with developing
discrete components (“chips”) at the logical gatdransistor
level. It is complex and time-consuming, dealingthw
concerns such as concurrency correctness, logicedatness,
efficiency, and manufacturing cost. It has vergdjdardware
and software support by way of field-programmalvld grrays
(FPGAS), hardware description languages (HDLs)ukitors
and analysis tools. Collectively, these tools émabprocess
known as electronic design automation (EDA) [1].

or interconnection protocols, among others.

Mobile computing, the Internet of Things, and thekdr
movement, among other trends, are driving up tmeadhel for
ad hoc high-level electronics design, while also openingp
to less experienced designers through platformsh sas
Arduino (http://arduino.cc) and Raspberry
(http://raspberrypi.org). The mismatched evolutioaf
electronics capabilities and battery technology degs an
additional strain on designers to optimize theisiges for
constrained power configurations. And electroniesign
increasingly involves substantial software develeptn with
no comprehensive tooling ensuring the proper algmm
between the software and hardware layers of theersys
matched up only at the designer's minds. Theseetfactors
compound to exacerbate the lack of proper softsapgort for
high-level electronic design.

In the realm of software engineering, architectural
description languages (ADLs) have a proven tradone of
supporting software architecture and design, eafhgdn the
embedded/real time domains [2]. They allow modglen
software system as a series of discrete comporentsheir
semantic and concrete connections, and then anglyhie
ensemble in search of a number of qualities thatdésign
must fulfill and constraints it must obey. In thimnner, ADLs
and their associated toolset can provide substaadistance
to software design creation and validation.

Pi

This work sought to validate whether a similar aggh

High-level electronics design is concerned with composing ¢4 sypport electronic design, by selecting ortirgan ADL

devices out of existing chips and other discreteagmmnents. It
is complex because the arrangement must
interoperability and compatibility across severdffedent
aspects, such as voltage levels, communicationoqots,
availability and type of digital or analog connectipoints or
“pins”, electrical power required or provided, casid volume
concerns, among others.

Unlike low-level electronics design, high-level @l®nics
design has poor software support. Typical softwfarethis
task can help represent the electrical schematt Iinds
components together (in terms of point-to-point restivity
only), as well as assist in the mechanical constmof the
overall design, i.e. printed circuit board tracemgd routing. It
doesn’t, however, provide higher-level semantic psup in
terms of voltage level compatibility, component grily

ensu@

suitable of representing electronic circuits aufiicgently high
vel of abstraction that, by developing proof-oficept
tooling to process said representation, the design be
automatically analyzed and validated in order tcsuea
compliance with a series of constraints or desigalgy hence
automating and assisting parts of the design psoces

APPROACH

The work was undertook in five general stages:
architectural representation metamodel definitimgtamodel
implementation, specification of design validatioand
assistance tactics, design validation and assistantomation,
and evaluation of results.

Using literary review, the research team’s own epees, semantic expressivenessconnectors are modeled as
and consultations with electronic designers, a metel was independent entities, possessing their own ateiaind sub-
designed and documented in order to representthéecture components, such asles andports. For both components and
and design of general purpose electronic devices. connectors, the externally visible attributes may domplex
sub-components, or simply name/value pairs, witfues

Existing ADLs and similar tools to document and lgna optionally ascribing to some typing system

electronic designs were evaluated as candidategséo or
extend to implement the metamodel. In the endustom The ABDIEL metamodel (M2) is detailed first. Itl@hs
implementation was built using Eclipse’s Modeling libraries, or collections of electronic components, to be
Framework (EMF) and Graphical Modeling Frameworkmodeled. The first basic component type in ABDIiElthepin
(GMF) [3], aided by the Epsilon project tooling [4]This specification. A pin specification describes a type of pin,
provided a visual editor where instances of theamedel which represents an electrical joint that belorgs tpart and
representing electronic designs could be definedséored for that can be connected to other pins, potentiallpriggng to
further manual or automated processing. different parts.

By discussing with electronic designers, and padndethe The second basic ABDIEL component type is past
results of the discussions with the metamodel aaling specification. A part represents a concrete bit of a high-level
capabilities and available time and resources, taoke&key electronic design, whether it is passive (e.g.dmstt resistors)
design concern aspects was drafted for which autmina or active (e.g. transistors, micro-controllers)art® contain
analysis and assistance would be provided. Themuel pins, as well aproperties, defined later ahead.
tooling was augmented using Java code in ordempbeiment
these design concern aspects. The final tool e assessed
by electronic designers for suitability and fitne$suse as part
of ordinary high-level electronic design work.

A third type of ABDIEL component is aport
specification. A port is a logical aggregation of pins. For
example, the Universal Serial Bus (USB) uses fans mn
each side of the connection: the power supply Wicc), the
The rest of this paper details the relevant demssiand ground pin, and the symmetric data pins D+ and Dv.

findings of each stage of the work. ABDIEL, instead of connecting USB parts by connegtfour
pins of one part to the corresponding four pinshef other, a
METAMODEL DEFINITION single USB port may be declared on each part

i i) specification. The port specification defines thport's
The first step of the work was to define an arafitee- ,5t0c0l; connected ports must have matching podsoclt
based integrated electronic design language, hentefalled 350 definesport wirings, which define aggregations of pins
ABDIEL . Software architecture 'nomgnclatur'e and guidslineithin the port: each wiring binds a pin specifioatto the port
as defined by the Software Engineering Institufe #d the gpecification, and specifies the alias/external eaon role, the
metamodeling concepts and guidelines from [6] {palerly pin has in the port. For instance, an Atmel AT&8y
the “M2/M1” metamodel/concrete model nomenclatuvegre mjcrocontroller part specification may expose anBUSort
used in the definition process. specification that aggregates four port wirings,ppiag the
A first distinction is made between types and insés. In Mmicrocontrollers PWR, GND, PB3 and PB4 pins to USB

general, electronic designs are madeants, which havepins, ~ V¢C, GND, D+ and D- aliases or roles, respectivelyhis
electrical joints through which parts can be cotes¢o each allows connecting the microcontroller to a USB saighart by
other. Every such element in a design must fiesspecified ~ USINg a single port connection (defined later). te\well that
before it can be instantiated. For instance, aseyaphore there is potential for confusion due to semantierimad of the
may be built with three light-emitting diodes (LEDsEach term “port”in both the domain model and the meteeioboth
such diode is a part in the electronic design.oRethe part Ports and pins are conceptually ports of the “pesthponent.

can be used, its type must be specified: the Fatit has two Before turning to connectors, it must be noted, inabrder
pins, one being of positive polarity (the anode] &re other of {5 provide higher-level connection expressivendhs, pin
negative polarity (the cathode); the fact thatais la maximum component is modeled as a special typejodft. Another
forward voltage (a discrete property); the facttthahas a gpecial type of joint is aet, a named element to which many
maximum forward current; and many other propersiesh as ing may be connected. If the circuit containsesanets that
brlghtness, specific color .vyave.length, etc. Oree part and share the same name, it is assumed they are afiectsd
pin types have been specified, instances of thembeaised in ogether (this is only a conceptual convention; thetamodel

a particular design. itself doesn't structurally enforce this).

A second classification of metamodel elementsaagtthe ABDIEL defines the basaire connector. A wire connects
lines of components and connectors. Components are discrete 5 goyrce joint to a target joint. The other pdesinnector is

elementg that Qxhibit externqlly visible attribytéscluding he port connection, which defines a connection between a
ports, which define the semantics and protocols througith 54 rce and a target port.
components can be connected. In order to provifficient .

At the model level (M1), ABDIEL defines a concrete
circuit as a collection of parts, wires, nets, port wisirand
! “ABDIEL" is something of a forced backronym for “hitecture-Based port connections, whose types belong to a spelifiary the
Integrated Electronics Design Language”. “Abd&Bo happens to be the circuit is based on.
name of the eldest son of a friend of the author.

Finally, ABDIEL allows parts to be annotated with
properties. Part specifications include sets of propertigdsich
are name/value pairs that can provide additioni@ildeof parts
and which can be used by analysis and assistaricmation
developers to drive the implemented tactic. Fahgaroperty
specified in the part specification, each concnetet of a
circuit gets a concrete instance of the propertygurestion.
Property values are subject to a simple type systerh that a
property’s value can be a string, integer, floatmgnber, or
Boolean value.

METAMODEL IMPLEMENTATION

Once the metamodel was defined, several existings to
were considered in order to implement it. Spealific the
Architectural Analysis and Design Language (AADIZ] and
the EAST-ADL [8] were considered.

AADL is a mature, well-established ADL for mixed
hardware/software architectures. Originally eronsd for
avionics architecture, it has been extended for esldéd
systems in general. The author has some expermieaising
AADL and extending AADL-based tools [9]. Howevéhe
visual tools for recent releases of AADL are rattificult to
set up, and are poorly documented. The ADL itsetfjle
covering both hardware and software, does so fraoftavare
perspective, and does not lend itself well to dedaglectronics
design, with “device” and “port” being the mostdigrained
electronic component abstractions available.

EAST-ADL, on the other hand, is an ADL for autorveti
electrical and electronic design. Its metamodeadsdmclude
detailed enough elements, as part of the “HardwacsNing”
package within its structural constructs, to enadteurate
representation of high-level electronic designs¢luding
concepts such as hardware pins and pin groupshwhaps
more or less directly to ABDIEL’s pins and portslowever,
EAST-ADL is a Unified Modeling Language (UML) prisi
modeling using this ADL would demand UML proficignc
from electronic designers, which are more used tmleting
their circuits after the low-level electrical schetins they map
to. There were also no readily available opeistfmund by
the author to implement or extend the required ABDI
concepts on top of EAST-ADL in an economical faghio

In light of these findings, a custom tool was buifting
EMF and GMF via Epsilon. A first EMF eCore metarebi$
built with ABDIEL’'s M2 elements. A concrete (M1)adel is
then created using Eclipse’'s generated model edifdris
model defines the specifications for parts, portd pins that
can be used to model concrete circuits. The misddlen run
through an Epsilon Transformation Language (ETL)psc
which generates a new EMF eCore metamodel (called t
ABDIEL Diagram M2), where some primitive element® a
programmatically introduced (circuit, joint, pinethwire, etc.),
and a concrete “Part” model element is createdeémh part
specification found in the source ABDIEL M1 model,
extending the abstract “Part” element. This isdeeebecause
GMF can only generate visual elements for concretelel
types; the process therefore allows palette elesnémtbe
created for each part type in the library model,wadl as
defining concrete properties for each part typeetlasn the

properties stated in the part's specification.otder to create
and associate part instances with their contaimeslgnd ports
at runtime, GMF Java initializers are also generate
automatically when generating the visual GMF editoy
augmenting the Epsilon generation process through-ib
hooks [10]. This makes the generated editor itistizna part’s
pins and ports as part of part instantiation, whiicturn makes
the elements visible and properly related whenticrga new
part. This is akin to having a UML object diagrampulate a
class’ structurally related objects when a new adb@ said
class is created in the diagram.

At the end of this process, a visual editor resthitg can
edit, save and open circuit diagram files whosdems derive
from the ABDIEL M1 library model that was used tengrate
the ABDIEL Diagram M2 metamodel.

DESIGNVALIDATION AND ASSISTANCETACTICS SELECTION

The selection of design validation and assistaacgcs to
be automated was a crucial aspect of the work. sthaeing
point for tactics selection was observing the stworings that
current electronics design tools have to this respmupled
with implementation complexity analysis and reseurc
constraints.

Recalling their state of the art, current electtendesign
tools accommodate low-level electrical schematicletiog of
circuits. This modeling is strictly limited to puito-point
connectivity, ignoring both electrical and highewel
electronic properties that must be manually comsididy the
designer. This means that, when considering é&phat point-
to-point connection, electrical properties of thiervening pins
such as voltage levels, polarity, intensity andection of
electrical current expected to flow through thenjpketc.; and
electronic properties such as roles (e.g. seri@, ddock data),
operating modes (e.g. signal input or output),tdigir analog
nature, among many others, are ignored by the rmgptdol,
which is therefore incapable of assisting the desigwith
these concerns.

Based on the division of electrical/electronic p@s
outlined above, several candidate tactics weretifth such
as voltage level checks between two or more cordegins;
forward voltage and/or current analysis, to prewvesmrioading
or burning parts; substitution analysis, i.e. deiee which
parts can replace others in a given design in daeptimize
costs or deal with availability issues; automatbécking of
port connections; among many others.

Beyond the inherent complexity of each candidattida
some issues applying to the categories as a whfdamied the
decision process. Specifically, analyzing sevesigctrical
properties of circuits requires representing artessing them
as a set of electrical connections forming a dagctyclic
graph, e.g. performing nodal analysis with Kirctthizws.
The ABDIEL metamodel is not amenable to this
representation, as it doesn’t consider internal wéing, and
does not intrinsically accommodates concepts suEhnet
interconnection (the fact that all joints connedizdame-name
nets are interconnected among them) and concrete pi
connections between ports; these concepts would ede
programmatically implemented on top of the circaoddel.

To illustrate these complexities with an examplmsider
the case of polarity check, e.g. ensuring that BB’k positive
(anode) pin is not connected to a negative termiliahe LED
is connected in series with a current-limiting sesi (thede

Each tactic was implemented as an Eclipse actiat th
attaches to the diagram as a whole, providing tte @access
to the Java object model created by EMF from theDAR.
Diagram model being edited. It is assumed thah estion

facto method of ensuring the LED doesn't allow excessivereats the model in a read-only fashion, and thimplements

current through it and burns out), a naive analgsissidering
only pins directly connected to the LED could yieldfalse
negative, since ABDIEL'’s resistor pins have no gola The
tool would need to trace back (potentially recuekiy all
connections that the resistor leads to, in ordeddtermine
whether a negative polarity pin is part of thatwak. Doing
this would also require knowing that a resistorrespnts series
impedance, with its two terminal pins connectecerimally,
something not contemplated by the metamodel. Ailaim
reasoning applies to a voltage level check, whicluldl be a
highly desirable validation to include, but higidgmplex to
implement in the tooling’s current state.

After considering all facts, four tactics were stdel for
design validation and assistance:

1. Find unused ports: flag for review any unconnegieds

any required model processing independently, atthou
common model querying and processing mechanismg wer
abstracted into utility classes.

In order to provide visual feedback from the analys
process, Eclipse markers [12] were generated irerotd
annotate circuit diagrams with informational, waigior error
markers or icons. This also entailed adding Eelip®ject and
resource support to the editor. Three of the impleted
validations use this type of visual feedback; tlgudgest
Concrete UC” action provides feedback via a singae-up
dialog that lists potential microcontroller modeis use in lieu
of each generic microcontroller found.

The resulting tool was exported into a stand-alone
application to be distributed for assessment analuation
purposes. Exporting the tool as a GMF editor Withrequired

found in a diagram, based on the assumption thds pa Eclipse project, resource and problem marker viewsport
added to the diagram may have been intended to heas not straightforward; a detailed recollectiontts reasons

connected through their ports;

2. Check port connections: validate port connectionsrisure
both connected ports share the same protocol angiar
wiring-consistent, that is, that both sets of pirases
match and that each alias on each port maps toaate
pin of the port’s containing part;

and required steps is available at [13].

The source code for the project is available af[14

EVALUATION

The tool was submitted to a number of electrongigieers,
in order to elicit feedback on its convenience aetpfulness

3. Suggest concrete UC: finds instances of a spe@dl p as an auxiliary electronics design tool.

called a Generic Atmel Microcontroller, modeled as
superset of several Atmel microcontrollers. Theaids
that a designer may use this generic part wherelébign
calls for a microcontroller; this tactic analyzée tparts’

In terms of suitability and design assistance, tto was
very well received; the results seem to validats thefining
and extending an ADL for electronics design analysin

pin and port connections to determine the concret&ertainly improve the design process. To reach a@em

microcontrollers that satisfy the connectivity regments
and that may be substituted in the deSign

4. Check polarity: under very specific conditions (@ese of
the previously outlined complexities), flag for rew any
pin connections where a polarized pin can be trézéshd
to a pin of the opposite polarity.

The “Key Findings and Future Work”
some notes about ways in which the metamodel coel
modified to support efficient and elegant implenagion of
some additional types of electrical validations.

DESIGNVALIDATION AND ASSISTANCEAUTOMATION

To implement the chosen validation and assistaactics,
three options were considered: OCL constraints cadddethe
ABDIEL Diagram metamodel; Epsilon Validation Langea
(EVL) GMF integration [11]; and GMF popup menu acati
extensions to analyze the model using Java codae t0
inconsistent results using OCL and EVL, most likelye to the
author’s lack of experience with these tools, awk lof time to
research issues properly, the tactics were implésden Java.

2The generic Atmel microcontroller is not considedening unused port
analysis, as by design some of its ports may geeshu

section contains o 2
d the specific changes performed to the model, pistiey

conclusive verdict, substantial additional work inoe carried
out to provide support for deeper, more compleXyaigand
assistance, as well as improving usability, an areehich the
tool's proof-of-concept status made itself evideAtding new
components to a library requires the software dpers’
intervention, as it entails editing the ABDIEL Mlodel and
re-building the ABDIEL Diagram M2 metamodel and
corresponding GMF editor. When doing this, depegddn

diagram files can crash the editor by triggering sMr EMF-
specific errors that require additional developmemtrk to
properly handle. Despite EMF and GMF being domain-
agnostic modeling and visual editor frameworksedain bias
from software modeling is evident, and navigatiéthe tool is
not always obvious for electronics designers, dafigavhen
compared with mainstream electronics design toaoth sas
Eagle, Proteus or KiCad.

KEY FINDINGS AND FUTURE WORK

In general, given the results of this work, thehautis
inclined to cautiously state that the initial hylpesis holds true,

3 “Model” here refers to real-world part number aniily variant, e.g.
ATtiny85, ATmega328, etc.

namely, that an architecture-driven approach toctedsic
design representation provides a proper platfornwhith to

and reading back the output of said tool into ttitoe in
order to provide integrated analysis

develop electronic design assistance and validation

automations. Unforeseen technical vagaries tookayaw ACKNOWLEDGMENT

valuable time that was planned to be put towardsemigorous . o

field testing and evolution of the proof-of-concépol; more The author would like to thank Dimitris Kolovos, FD.,
such significant real world testing and evolutisnnieeded to !ecturer —at The University of York and main

validate the hypothesis.

Model-driven development proved to be very valuable
this approach, on two dimensions. On one handngitally,

committer/maintainer of the Eclipse Epsilon PrajecDr.
Kolovos kindly answered questions and provided {gomn

about Epsilon usage that were highly relevant te th

completion of this work.

electronics design appears very amenable to a domai

modeling approach; electronics can be construed sesies of
models (electrical, component-and-connector, soéjvahat
are precisely interrelated and provide a solidsbapbn which
to tackle orthogonal design concerns. On the otieerd,
incidentally, the existence of tools such as thigpEe Projects’

The author would also like to thank Jimmy Pol, MSc,

adjunct lecturer of Software Architecture at INTE@r
patiently listening and warmly encouraging the auth
throughout the execution of the work, and for proedding
and helping correct drafts of this paper.

EMF, GMF and Epsilon frameworks made possible the

development of this project under conditions thatid have
otherwise been insurmountable.

Areas of further possible work include:

» Declarative metamodel extensibility. This wouldoal
electronics designers to declaratively create tlmsin
parts, something which currently requires involvamef
a software engineer. This may require choosinge& n
framework to generate the visual editor,
substantial
capabilities while allowing declarative editor enxgeons;
alternatively, a much deeper understanding of GM#y m
allow creating an editor that can be declarativedy
configured, but GMF is not intended for this anchygly
establishing the feasibility of this approach imeplia
significant development effort. Another concern e
addressed is that currently, circuit diagrams doimg

parts that have been renamed or modified in theeinod [6]

cause the editor to crash; these failures wouldl neee
handled cleanly

» Integration with the rest of the electronics degigacess,
including but not limited to generation of scheimdites
to carry out detailed electrical and mechanicaheshent
of designs with external tools, and generation kefletal
source code to drive electronic designs. Modetetxt
(m2t) transformations [6] could provide an econahic
way to achieve this

» Deeper electrical and electronic analysis. As arped
earlier, the ABDIEL Diagram model is not suitabler f
this, but a model transformation to produce an\eant
lower-level electrical model may allow more precessal
efficient analysis of some desirable circuit prdies; by
modeling the circuit as a directed cyclic graph itas
concerns voltage and current. Another approachddme
transforming the model to a representation that lsan
directly fed to an analog circuit simulation toalch as
SPICE
(http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SB|C

entailing
development work to duplicate GMF's

REFERENCES

[1] Wikipedia. “Electronic Design Automation”. [OnlihAvailable:
httg://en.wikipedia.org/wiki/EIectronic_Design_Amnation (February

12" 2015) .

J. Delange. “Introduction to the Architecture Arsaé and Design
Language”. SEI Blog. [Online] Available:
http://blog.sei.cmu.edu/post.cfm/introduction-te-#rchitecture-
analysis-design-languag (February"2D15).

The Eclipse Foundation. “Graphical Modeling FraragwT utorial”.
[Online] Available:
https://wiki.eclipse.org/Graphical_Modeling_Framedutorial/Part_
1 (February 15th 2015).

D. Kolovos, L. Rose, A. Garcia-Dominguez, R. Paig&@he Epsilon
Book”. [Online] Available: http://eclipse.org/efsi/doc/book/
(December 2013)

L. Bass, P. Clements, R. Kazman. “Software Archite in Practice”,
3rd Ed. Boston: Addison-Wesley, 2012.

M. Brambilla, J. Cabot, M. Wimmer. “Model-Driven offware
Engineering in Practice”. Morgan & Claypool, 2012.

SAE International. “Architecture Analysis & Desigganguage (AADL)
Annex Volume 2”. SAE International Standards: AG62, 2011.

The ATESST2 Consortium. “EAST-ADL Domain Model $jjation,
version 2.1". [Online] Available: http://www.eaatll.info/ (2010).

R. Jiménez. “Extending an open source, Eclipseda#DL toolset”.
York:University of York, 2004.

Epsilon Blog. “Customizing a GMF editor generated EUGENia” .
[Online] Available: http://eclipse.org/epsilon/dadicles/eugenia-
polishing/ (February 122015).

Epsilon Blog. “Live validation and quick-fixes BMF-based editors
with EVL". [Online] Available:
http://www.eclipse.org/epsilon/doc/articles/evl-gimfegration/
(February 12 2015).

D. Glozic, J. McAffer. “Mark My Words. Using magks to tell users
about problems and tasks”. [Online] Available:
https://www.eclipse.org/articles/Article-Mark%20My@Words/mark-
my-words.html (April 1 2001)

R. Jiménez. “Exporting a GMF Editor as an Eclipseduct”. [Online]
Available: http://www.modelesis.com/?p=204 (Febyus2" 2015).

[14] R.Jiménez. Github repositories. https://githamjimenezh

(2]

(3]

(4]

(7]
(8]
9]

[10]

[11]

[12]

[13]

