
Using Architecture Description Languages

for Software-Assisted Electronics Design

Ramón Jiménez, MSc
Santo Domingo Institute of Technology (INTEC)

Santo Domingo, Dominican Republic
ramon.jimenez@intec.edu.do; rjimenezh@gmail.com

Abstract—the number of people designing high-level electronic
devices from pre-existing building blocks is growing rapidly thanks
to more accessible prototyping platforms. Software tools currently
available for this activity provide little to no assistance in terms of
automated validation of several important design concerns,
complicating the adoption of this activity and increasing the error rate
evidenced in the assembly and testing phases of project development.
Starting from the success exhibited by architectural description
languages (ADLs) in supporting automated assistance and validation
of software architecture, a hypothesis is made that similar techniques
can help automate and validate specific aspects of electronics design.
The resulting tooling and its evaluation seem to confirm the
hypotheses, but there is evidence for the need of more extensive field
validation and tool implementation improvements. Several extension
points are also identified that, if undertaken, may provide additional
insight into the approach.

Keywords—adl, metamodeling, emf, gmf, epsilon, electronics

MOTIVATION

Low-level electronics design is concerned with developing
discrete components (“chips”) at the logical gate or transistor
level. It is complex and time-consuming, dealing with
concerns such as concurrency correctness, logical correctness,
efficiency, and manufacturing cost. It has very good hardware
and software support by way of field-programmable grid arrays
(FPGAs), hardware description languages (HDLs), simulators
and analysis tools. Collectively, these tools enable a process
known as electronic design automation (EDA) [1].

High-level electronics design is concerned with composing
devices out of existing chips and other discrete components. It
is complex because the arrangement must ensure
interoperability and compatibility across several different
aspects, such as voltage levels, communication protocols,
availability and type of digital or analog connection points or
“pins”, electrical power required or provided, cost and volume
concerns, among others.

Unlike low-level electronics design, high-level electronics
design has poor software support. Typical software for this
task can help represent the electrical schematic that binds
components together (in terms of point-to-point connectivity
only), as well as assist in the mechanical construction of the
overall design, i.e. printed circuit board tracing and routing. It
doesn’t, however, provide higher-level semantic support in
terms of voltage level compatibility, component polarity

mismatch detection, semantic compatibility of communication
or interconnection protocols, among others.

Mobile computing, the Internet of Things, and the Maker
movement, among other trends, are driving up the demand for
ad hoc high-level electronics design, while also opening it up
to less experienced designers through platforms such as
Arduino (http://arduino.cc) and Raspberry Pi
(http://raspberrypi.org). The mismatched evolution of
electronics capabilities and battery technology imposes an
additional strain on designers to optimize their designs for
constrained power configurations. And electronic design
increasingly involves substantial software development, with
no comprehensive tooling ensuring the proper alignment
between the software and hardware layers of the system,
matched up only at the designer’s minds. These three factors
compound to exacerbate the lack of proper software support for
high-level electronic design.

In the realm of software engineering, architectural
description languages (ADLs) have a proven track record of
supporting software architecture and design, especially in the
embedded/real time domains [2]. They allow modeling a
software system as a series of discrete components and their
semantic and concrete connections, and then analyzing the
ensemble in search of a number of qualities that the design
must fulfill and constraints it must obey. In this manner, ADLs
and their associated toolset can provide substantial assistance
to software design creation and validation.

This work sought to validate whether a similar approach
can support electronic design, by selecting or creating an ADL
suitable of representing electronic circuits at a sufficiently high
level of abstraction that, by developing proof-of-concept
tooling to process said representation, the design can be
automatically analyzed and validated in order to ensure
compliance with a series of constraints or design goals, hence
automating and assisting parts of the design process.

APPROACH

The work was undertook in five general stages:
architectural representation metamodel definition, metamodel
implementation, specification of design validation and
assistance tactics, design validation and assistance automation,
and evaluation of results.

Using literary review, the research team’s own experiences,
and consultations with electronic designers, a metamodel was
designed and documented in order to represent the architecture
and design of general purpose electronic devices.

Existing ADLs and similar tools to document and analyze
electronic designs were evaluated as candidates to use or
extend to implement the metamodel. In the end, a custom
implementation was built using Eclipse’s Modeling
Framework (EMF) and Graphical Modeling Framework
(GMF) [3], aided by the Epsilon project tooling [4]. This
provided a visual editor where instances of the metamodel
representing electronic designs could be defined and stored for
further manual or automated processing.

By discussing with electronic designers, and pondering the
results of the discussions with the metamodel and tooling
capabilities and available time and resources, a set of key
design concern aspects was drafted for which automated
analysis and assistance would be provided. The metamodel
tooling was augmented using Java code in order to implement
these design concern aspects. The final tool was then assessed
by electronic designers for suitability and fitness of use as part
of ordinary high-level electronic design work.

The rest of this paper details the relevant decisions and
findings of each stage of the work.

METAMODEL DEFINITION

The first step of the work was to define an architecture-
based integrated electronic design language, henceforth called
ABDIEL1. Software architecture nomenclature and guidelines
as defined by the Software Engineering Institute [5], and the
metamodeling concepts and guidelines from [6] (particularly
the “M2/M1” metamodel/concrete model nomenclature), were
used in the definition process.

A first distinction is made between types and instances. In
general, electronic designs are made of parts, which have pins,
electrical joints through which parts can be connected to each
other. Every such element in a design must first be specified
before it can be instantiated. For instance, a toy semaphore
may be built with three light-emitting diodes (LEDs). Each
such diode is a part in the electronic design. Before the part
can be used, its type must be specified: the fact that it has two
pins, one being of positive polarity (the anode) and the other of
negative polarity (the cathode); the fact that it has a maximum
forward voltage (a discrete property); the fact that it has a
maximum forward current; and many other properties such as
brightness, specific color wavelength, etc. Once the part and
pin types have been specified, instances of them can be used in
a particular design.

A second classification of metamodel elements is along the
lines of components and connectors. Components are discrete
elements that exhibit externally visible attributes, including
ports, which define the semantics and protocols through which
components can be connected. In order to provide sufficient

1 “ABDIEL” is something of a forced backronym for “Architecture-Based
Integrated Electronics Design Language”. “Abdiel” also happens to be the
name of the eldest son of a friend of the author.

semantic expressiveness, connectors are modeled as
independent entities, possessing their own attributes and sub-
components, such as roles and ports. For both components and
connectors, the externally visible attributes may be complex
sub-components, or simply name/value pairs, with values
optionally ascribing to some typing system.

The ABDIEL metamodel (M2) is detailed first. It allows
libraries, or collections of electronic components, to be
modeled. The first basic component type in ABDIEL is the pin
specification. A pin specification describes a type of pin,
which represents an electrical joint that belongs to a part and
that can be connected to other pins, potentially belonging to
different parts.

The second basic ABDIEL component type is the part
specification. A part represents a concrete bit of a high-level
electronic design, whether it is passive (e.g. buttons, resistors)
or active (e.g. transistors, micro-controllers). Parts contain
pins, as well as properties, defined later ahead.

A third type of ABDIEL component is a port
specification. A port is a logical aggregation of pins. For
example, the Universal Serial Bus (USB) uses four pins on
each side of the connection: the power supply pin (Vcc), the
ground pin, and the symmetric data pins D+ and D-. In
ABDIEL, instead of connecting USB parts by connecting four
pins of one part to the corresponding four pins of the other, a
single USB port may be declared on each part
specification. The port specification defines the port’s
protocol; connected ports must have matching protocols. It
also defines port wirings, which define aggregations of pins
within the port: each wiring binds a pin specification to the port
specification, and specifies the alias/external name, or role, the
pin has in the port. For instance, an Atmel ATtiny85
microcontroller part specification may expose an USB port
specification that aggregates four port wirings, mapping the
microcontroller’s PWR, GND, PB3 and PB4 pins to USB’s
Vcc, GND, D+ and D- aliases or roles, respectively. This
allows connecting the microcontroller to a USB socket part by
using a single port connection (defined later). Note well that
there is potential for confusion due to semantic overload of the
term “port” in both the domain model and the metamodel: both
ports and pins are conceptually ports of the “part” component.

Before turning to connectors, it must be noted that, in order
to provide higher-level connection expressiveness, the pin
component is modeled as a special type of joint. Another
special type of joint is a net, a named element to which many
pins may be connected. If the circuit contains several nets that
share the same name, it is assumed they are all connected
together (this is only a conceptual convention; the metamodel
itself doesn’t structurally enforce this).

ABDIEL defines the base wire connector. A wire connects
a source joint to a target joint. The other possible connector is
the port connection, which defines a connection between a
source and a target port.

At the model level (M1), ABDIEL defines a concrete
circuit as a collection of parts, wires, nets, port wirings and
port connections, whose types belong to a specific library the
circuit is based on.

Finally, ABDIEL allows parts to be annotated with
properties. Part specifications include sets of properties, which
are name/value pairs that can provide additional details of parts
and which can be used by analysis and assistance automation
developers to drive the implemented tactic. For each property
specified in the part specification, each concrete part of a
circuit gets a concrete instance of the property in question.
Property values are subject to a simple type system such that a
property’s value can be a string, integer, floating number, or
Boolean value.

METAMODEL IMPLEMENTATION

Once the metamodel was defined, several existing tools
were considered in order to implement it. Specifically, the
Architectural Analysis and Design Language (AADL) [7] and
the EAST-ADL [8] were considered.

AADL is a mature, well-established ADL for mixed
hardware/software architectures. Originally envisioned for
avionics architecture, it has been extended for embedded
systems in general. The author has some experience both using
AADL and extending AADL-based tools [9]. However, the
visual tools for recent releases of AADL are rather difficult to
set up, and are poorly documented. The ADL itself, while
covering both hardware and software, does so from a software
perspective, and does not lend itself well to detailed electronics
design, with “device” and “port” being the most fine-grained
electronic component abstractions available.

EAST-ADL, on the other hand, is an ADL for automotive
electrical and electronic design. Its metamodel does include
detailed enough elements, as part of the “HardwareModeling”
package within its structural constructs, to enable accurate
representation of high-level electronic designs, including
concepts such as hardware pins and pin groups, which maps
more or less directly to ABDIEL’s pins and ports. However,
EAST-ADL is a Unified Modeling Language (UML) profile;
modeling using this ADL would demand UML proficiency
from electronic designers, which are more used to modeling
their circuits after the low-level electrical schematics they map
to. There were also no readily available open tools found by
the author to implement or extend the required ABDIEL
concepts on top of EAST-ADL in an economical fashion.

In light of these findings, a custom tool was built using
EMF and GMF via Epsilon. A first EMF eCore metamodel is
built with ABDIEL’s M2 elements. A concrete (M1) model is
then created using Eclipse’s generated model editor. This
model defines the specifications for parts, ports and pins that
can be used to model concrete circuits. The model is then run
through an Epsilon Transformation Language (ETL) script,
which generates a new EMF eCore metamodel (called the
ABDIEL Diagram M2), where some primitive elements are
programmatically introduced (circuit, joint, pin, net, wire, etc.),
and a concrete “Part” model element is created for each part
specification found in the source ABDIEL M1 model,
extending the abstract “Part” element. This is needed because
GMF can only generate visual elements for concrete model
types; the process therefore allows palette elements to be
created for each part type in the library model, as well as
defining concrete properties for each part type based on the

properties stated in the part’s specification. In order to create
and associate part instances with their contained pins and ports
at runtime, GMF Java initializers are also generated
automatically when generating the visual GMF editor, by
augmenting the Epsilon generation process through built-in
hooks [10]. This makes the generated editor instantiate a part’s
pins and ports as part of part instantiation, which in turn makes
the elements visible and properly related when creating a new
part. This is akin to having a UML object diagram populate a
class’ structurally related objects when a new object of said
class is created in the diagram.

At the end of this process, a visual editor results that can
edit, save and open circuit diagram files whose contents derive
from the ABDIEL M1 library model that was used to generate
the ABDIEL Diagram M2 metamodel.

DESIGN VALIDATION AND ASSISTANCE TACTICS SELECTION

The selection of design validation and assistance tactics to
be automated was a crucial aspect of the work. The starting
point for tactics selection was observing the shortcomings that
current electronics design tools have to this respect, coupled
with implementation complexity analysis and resource
constraints.

Recalling their state of the art, current electronics design
tools accommodate low-level electrical schematic modeling of
circuits. This modeling is strictly limited to point-to-point
connectivity, ignoring both electrical and higher-level
electronic properties that must be manually considered by the
designer. This means that, when considering a particular point-
to-point connection, electrical properties of the intervening pins
such as voltage levels, polarity, intensity and direction of
electrical current expected to flow through the joint, etc.; and
electronic properties such as roles (e.g. serial data, clock data),
operating modes (e.g. signal input or output), digital or analog
nature, among many others, are ignored by the modeling tool,
which is therefore incapable of assisting the designer with
these concerns.

Based on the division of electrical/electronic properties
outlined above, several candidate tactics were identified, such
as voltage level checks between two or more connected pins;
forward voltage and/or current analysis, to prevent overloading
or burning parts; substitution analysis, i.e. determine which
parts can replace others in a given design in order to optimize
costs or deal with availability issues; automated checking of
port connections; among many others.

Beyond the inherent complexity of each candidate tactic,
some issues applying to the categories as a whole informed the
decision process. Specifically, analyzing several electrical
properties of circuits requires representing and processing them
as a set of electrical connections forming a directed cyclic
graph, e.g. performing nodal analysis with Kirchhoff laws.
The ABDIEL metamodel is not amenable to this
representation, as it doesn’t consider internal part wiring, and
does not intrinsically accommodates concepts such as net
interconnection (the fact that all joints connected to same-name
nets are interconnected among them) and concrete pin
connections between ports; these concepts would need to be
programmatically implemented on top of the circuit model.

To illustrate these complexities with an example, consider
the case of polarity check, e.g. ensuring that an LED’s positive
(anode) pin is not connected to a negative terminal. If the LED
is connected in series with a current-limiting resistor (the de
facto method of ensuring the LED doesn’t allow excessive
current through it and burns out), a naïve analysis considering
only pins directly connected to the LED could yield a false
negative, since ABDIEL’s resistor pins have no polarity. The
tool would need to trace back (potentially recursively) all
connections that the resistor leads to, in order to determine
whether a negative polarity pin is part of that network. Doing
this would also require knowing that a resistor represents series
impedance, with its two terminal pins connected internally,
something not contemplated by the metamodel. A similar
reasoning applies to a voltage level check, which would be a
highly desirable validation to include, but highly complex to
implement in the tooling’s current state.

After considering all facts, four tactics were selected for
design validation and assistance:

1. Find unused ports: flag for review any unconnected ports
found in a diagram, based on the assumption that parts
added to the diagram may have been intended to be
connected through their ports;

2. Check port connections: validate port connections to ensure
both connected ports share the same protocol and are pin-
wiring-consistent, that is, that both sets of pin aliases
match and that each alias on each port maps to a concrete
pin of the port’s containing part;

3. Suggest concrete UC: finds instances of a special part
called a Generic Atmel Microcontroller, modeled as a
superset of several Atmel microcontrollers. The idea is
that a designer may use this generic part where the design
calls for a microcontroller; this tactic analyzes the parts’
pin and port connections to determine the concrete
microcontrollers that satisfy the connectivity requirements
and that may be substituted in the design2;

4. Check polarity: under very specific conditions (because of
the previously outlined complexities), flag for review any
pin connections where a polarized pin can be traced to lead
to a pin of the opposite polarity.

The “Key Findings and Future Work” section contains
some notes about ways in which the metamodel could be
modified to support efficient and elegant implementation of
some additional types of electrical validations.

DESIGN VALIDATION AND ASSISTANCE AUTOMATION

To implement the chosen validation and assistance tactics,
three options were considered: OCL constraints added to the
ABDIEL Diagram metamodel; Epsilon Validation Language
(EVL) GMF integration [11]; and GMF popup menu action
extensions to analyze the model using Java code. Due to
inconsistent results using OCL and EVL, most likely due to the
author’s lack of experience with these tools, and lack of time to
research issues properly, the tactics were implemented in Java.

2The generic Atmel microcontroller is not considered during unused port
analysis, as by design some of its ports may go unused.

Each tactic was implemented as an Eclipse action that
attaches to the diagram as a whole, providing the code access
to the Java object model created by EMF from the ABDIEL
Diagram model being edited. It is assumed that each action
treats the model in a read-only fashion, and that it implements
any required model processing independently, although
common model querying and processing mechanisms were
abstracted into utility classes.

In order to provide visual feedback from the analysis
process, Eclipse markers [12] were generated in order to
annotate circuit diagrams with informational, warning or error
markers or icons. This also entailed adding Eclipse project and
resource support to the editor. Three of the implemented
validations use this type of visual feedback; the “Suggest
Concrete UC” action provides feedback via a simple pop-up
dialog that lists potential microcontroller models3 to use in lieu
of each generic microcontroller found.

The resulting tool was exported into a stand-alone
application to be distributed for assessment and evaluation
purposes. Exporting the tool as a GMF editor with the required
Eclipse project, resource and problem marker views support
was not straightforward; a detailed recollection of the reasons
and required steps is available at [13].

The source code for the project is available at [14].

EVALUATION

The tool was submitted to a number of electronic designers,
in order to elicit feedback on its convenience and helpfulness
as an auxiliary electronics design tool.

In terms of suitability and design assistance, the tool was
very well received; the results seem to validate that defining
and extending an ADL for electronics design analysis can
certainly improve the design process. To reach a more
conclusive verdict, substantial additional work must be carried
out to provide support for deeper, more complex analysis and
assistance, as well as improving usability, an area in which the
tool’s proof-of-concept status made itself evident. Adding new
components to a library requires the software developers’
intervention, as it entails editing the ABDIEL M1 model and
re-building the ABDIEL Diagram M2 metamodel and
corresponding GMF editor. When doing this, depending on
the specific changes performed to the model, pre-existing
diagram files can crash the editor by triggering GMF- or EMF-
specific errors that require additional development work to
properly handle. Despite EMF and GMF being domain-
agnostic modeling and visual editor frameworks, a certain bias
from software modeling is evident, and navigation of the tool is
not always obvious for electronics designers, especially when
compared with mainstream electronics design tools such as
Eagle, Proteus or KiCad.

KEY FINDINGS AND FUTURE WORK

In general, given the results of this work, the author is
inclined to cautiously state that the initial hypothesis holds true,

3 “Model” here refers to real-world part number or family variant, e.g.
ATtiny85, ATmega328, etc.

namely, that an architecture-driven approach to electronic
design representation provides a proper platform on which to
develop electronic design assistance and validation
automations. Unforeseen technical vagaries took away
valuable time that was planned to be put towards more rigorous
field testing and evolution of the proof-of-concept tool; more
such significant real world testing and evolution is needed to
validate the hypothesis.

Model-driven development proved to be very valuable to
this approach, on two dimensions. On one hand, intrinsically,
electronics design appears very amenable to a domain
modeling approach; electronics can be construed as a series of
models (electrical, component-and-connector, software) that
are precisely interrelated and provide a solid basis upon which
to tackle orthogonal design concerns. On the other hand,
incidentally, the existence of tools such as the Eclipse Projects’
EMF, GMF and Epsilon frameworks made possible the
development of this project under conditions that would have
otherwise been insurmountable.

Areas of further possible work include:

• Declarative metamodel extensibility. This would allow
electronics designers to declaratively create their own
parts, something which currently requires involvement of
a software engineer. This may require choosing a new
framework to generate the visual editor, entailing
substantial development work to duplicate GMF’s
capabilities while allowing declarative editor extensions;
alternatively, a much deeper understanding of GMF may
allow creating an editor that can be declaratively re-
configured, but GMF is not intended for this and simply
establishing the feasibility of this approach implies a
significant development effort. Another concern to be
addressed is that currently, circuit diagrams containing
parts that have been renamed or modified in the model
cause the editor to crash; these failures would need to be
handled cleanly

• Integration with the rest of the electronics design process,
including but not limited to generation of schematic files
to carry out detailed electrical and mechanical refinement
of designs with external tools, and generation of skeletal
source code to drive electronic designs. Model to text
(m2t) transformations [6] could provide an economical
way to achieve this

• Deeper electrical and electronic analysis. As explained
earlier, the ABDIEL Diagram model is not suitable for
this, but a model transformation to produce an equivalent
lower-level electrical model may allow more precise and
efficient analysis of some desirable circuit properties, by
modeling the circuit as a directed cyclic graph as it
concerns voltage and current. Another approach could be
transforming the model to a representation that can be
directly fed to an analog circuit simulation tool such as
SPICE
(http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/),

and reading back the output of said tool into the editor in
order to provide integrated analysis

ACKNOWLEDGMENT

The author would like to thank Dimitris Kolovos, Ph. D.,
lecturer at The University of York and main
committer/maintainer of the Eclipse Epsilon Project. Dr.
Kolovos kindly answered questions and provided pointers
about Epsilon usage that were highly relevant to the
completion of this work.

The author would also like to thank Jimmy Pol, MSc,
adjunct lecturer of Software Architecture at INTEC, for
patiently listening and warmly encouraging the author
throughout the execution of the work, and for proof-reading
and helping correct drafts of this paper.

REFERENCES

[1] Wikipedia. “Electronic Design Automation”. [Online] Available:

http://en.wikipedia.org/wiki/Electronic_Design_Automation (February
12th 2015) .

[2] J. Delange. “Introduction to the Architecture Analysis and Design
Language”. SEI Blog. [Online] Available:
http://blog.sei.cmu.edu/post.cfm/introduction-to-the-architecture-
analysis-design-languag (February 12th 2015).

[3] The Eclipse Foundation. “Graphical Modeling Framework Tutorial”.
[Online] Available:
https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_
1 (February 15th 2015).

[4] D. Kolovos, L. Rose, A. García-Domínguez, R. Paige. “The Epsilon
Book”. [Online] Available: http://eclipse.org/epsilon/doc/book/
(December 2013)

[5] L. Bass, P. Clements, R. Kazman. “Software Architecture in Practice”,
3rd Ed. Boston: Addison-Wesley, 2012.

[6] M. Brambilla, J. Cabot, M. Wimmer. “Model-Driven Software
Engineering in Practice”. Morgan & Claypool, 2012.

[7] SAE International. “Architecture Analysis & Design Language (AADL)
Annex Volume 2”. SAE International Standards: AS5506/2, 2011.

[8] The ATESST2 Consortium. “EAST-ADL Domain Model Specification,
version 2.1”. [Online] Available: http://www.east-adl.info/ (2010).

[9] R. Jiménez. “Extending an open source, Eclipse-based AADL toolset”.
York:University of York, 2004.

[10] Epsilon Blog. “Customizing a GMF editor generated by EuGENia” .
[Online] Available: http://eclipse.org/epsilon/doc/articles/eugenia-
polishing/ (February 12th 2015).

[11] Epsilon Blog. “Live validation and quick-fixes in GMF-based editors
with EVL”. [Online] Available:
http://www.eclipse.org/epsilon/doc/articles/evl-gmf-integration/
(February 12th 2015).

[12] D. Glozic, J. McAffer. “Mark My Words. Using markers to tell users
about problems and tasks”. [Online] Available:
https://www.eclipse.org/articles/Article-Mark%20My%20Words/mark-
my-words.html (April 1 2001)

[13] R. Jiménez. “Exporting a GMF Editor as an Eclipse Product”. [Online]
Available: http://www.modelesis.com/?p=204 (February 12th 2015).

[14] R. Jiménez. Github repositories. https://github.com/rjimenezh

